
A study on the specific heat of a one-dimensional hexagonal quasicrystal

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 L513

(http://iopscience.iop.org/0953-8984/11/45/101)

Download details:

IP Address: 171.66.16.220

The article was downloaded on 15/05/2010 at 17:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/45
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) L513–L517. Printed in the UK PII: S0953-8984(99)07310-5

LETTER TO THE EDITOR

A study on the specific heat of a one-dimensional hexagonal
quasicrystal

Tian-You Fan
Research Centre of Materials Science, Beijing Institute of Technology, PO Box 327,
Beijing 100081, People’s Republic of China

Received 31 August 1999

Abstract. Extending the Debye approach for studying the specific heat of a crystal to a
quasicrystal, this study gives the formula of the specific heat of a one-dimensional hexagonal
quasicrystal.

Since a quasicrystal was observed first by Shechtmanet al (1984), the electronic structure and
the optic, magnetic, thermal and mechanical properties of the material have been extensively
investigated. This letter reports a study on the specific heat of a quasicrystal. It is well known
that the understanding of the specific heat of a quasicrystal depends upon the knowledge on
the lattice vibration of the solid. Because there is a lack of this knowledge, one can study the
specific heat of a quasicrystal only based on phenomenological versions at present. Among
them, the Debye (1912) continuous medium model for studying the specific heat of an ordinary
crystal is one of the useful models, which can be extended to analysing the specific heat of
a quasicrystal. Even taking the phenomenological continuous medium model, the problem
presents a fundamental difficulty due to the complexity of the basic equations of the elasticity
of quasicrystals. To overcome the difficulty, this letter suggests a simple model, that is,
the three-dimensional elastic field of a one-dimensional hexagonal quasicrystal is simplified
approximately as a superposition of a plane field and an anti-plane field, in which the phonon
and phason parameters are coupled in the anti-plane field. This model extremely simplifies
the basic equations of the elasticity of the quasicrystal. Particularly, only in this way is the
analytic formulation of the specific heat of the material available.

Soon after the discovery of the quasicrystal, Bak (1985) developed the theory of elasticity
of quasicrystals based on the Landau–Lifshitz (1968) phenomenological theory of elementary
excitation of condensed matter. In Bak’s theory there are two lower frequency excitations such
as phononu and phasonw. The introduction of the phason, which is an essential difference
between the theories of elasticity of quasicrystals and crystals, gives a macro-description of the
quasiperiodicity of the new solid phases. Corresponding to the phonon and phason parameters,
there are two strain fieldsuij andwij in the theory of elasticity of quasicrystals, in which the
former describes the change in the shape and volume of the unit cell and the latter describes
the local rearrangement of the unit cell in the quasicrystal, while the local rearrangement is
indistinguishable in a crystal. Either the phonon or the phason is considered as a continuous
medium field variable under the frame of the present theory of elasticity of quasicrystals. The
Bak theory is the basis of the present study.
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Consider a one-dimensional hexagonal quasicrystal with the Laue class 6/mhmm;
(x1, x2, x3) represents the rectilinear coordinate system. Assume the atom arrangement along
the axisx3 is quasiperiodic, and the atom arrangement along thex1–x2 plane is periodic in the
quasicrystal. In this case, there are phonon displacement componentsu1, u2, u3 and phason
displacement componentw3 (andw1 = w2 = 0).

For simplicity of mathematical treatment, assume approximately the field quantities are
independent ofx3, i.e.,

ui = ui(x1, x2, t) (i = 1, 2, 3) w3 = w3(x1, x2, t) (1)

in whichx1, x2 are the spatial coordinates measured above, andt the time.
Under the assumption (1), the stress–strain relations originating with Wanget al (1997)

will be reduced to the following

σ11 = C11ε11 +C12ε22

σ22 = C12ε11 +C11ε22

σ12 = σ21 = 2C66ε12

σ33 = C13(ε11 + ε22)

H33 = R3(ε11 + ε22)

(2)

σ23 = σ32 = 2C44ε23 +R3w32

σ31 = σ13 = 2C44ε31 +R3w31

H23 = 2R3ε23 +K2w32

H31 = 2R3ε31 +K2w31

(3)

whereεij are the strain components associated with the phonon field,wij the strain components
associated with the phason field and

εij = 1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
wij = ∂wi

∂xj
. (4)

σij are the stress components similar to those in a conventional crystal,Hij the stress
components due to the existence of the phason field,Cij the elastic constants of the phonon
field,Ki the elastic constants of the phason field andRi the phonon–phason coupling elastic
constants.

The corresponding equations of motion are

∂σ11

∂x1
+
∂σ12

∂x2
= ρ ∂

2u1

∂t2

∂σ21

∂x1
+
∂σ22

∂y
= ρ ∂

2u2

∂t2
(5)

∂σ31

∂x1
+
∂σ32

∂x2
= ρ ∂

2u3

∂t2

∂H31

∂x1
+
∂H32

∂x2
= ρ ∂

2w3

∂t2
(6)

in whichρ is the mass density of the quasicrystal.
It is evident that the field described by equations (2) and (5) is a plane phonon field, and

the field described by equations (3) and (6) represents an anti-plane coupling phonon–phason
field.

If we introduce displacement potentialsF ,G andφ, ψ such that

u1 = ∂F

∂x1
+
∂G

∂x2
u2 = ∂F

∂x2
− ∂G

∂x1
(7)

u3 = αφ − R3ψ w3 = R3φ + αψ (8)
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where

α =
[
C44−K2 +

√
(C44−K2)2 + 4R2

3

]
/2 (9)

then (2)–(6) are reduced to the following wave equations

∇2F = 1

c2
1

∂2F

∂t2
∇2G = 1

c2
2

∂2G

∂t2
(10)

∇2φ = 1

s2
1

∂2φ

∂t2
∇2ψ = 1

s2
2

∂2ψ

∂t2
(11)

in which∇2 = ∂2/∂x2
1 + ∂2/∂x2

2, and

c1 =
√
C11/ρ c2 =

√
(C11− C12)/2ρ

s1 =
√
ε1/ρ s2 =

√
ε2/ρ

ε1 =
(
C44 +K2 +

√
(C44−K2)2 + 4R2

3

)
/2

ε2 =
(
C44 +K2 −

√
(C44−K2)2 + 4R2

3

)
/2.

(12)

Equations (10) and (11) describe the propagation of vibration in the medium of a one-
dimensional hexagonal quasicrystal with the Laue class 6/mhmm andc1, c2, s1 ands2 are the
speeds of the wave propagation.

Debye (1912) considered that a solid may be seen as a continuous elastic medium,
which can propagate the waves of elastic vibration. We now extend the Debye hypothesis
to a quasicrystal. That is we consider the one-dimensional hexagonal quasicrystal to be a
continuous elastic medium, in which the elastic vibration and the wave propagation have been
discussed in the proceeding section. Denoting byν the atom vibration frequency andg(ν) the
frequency distribution function, then

g(ν) dν

will be the number of simple harmonic vibrations betweenν andν + dν, and denoting byN
the number of atoms then the total number of degrees of freedom should be∫ ∞

0
g(ν) dν = 3N. (13)

Extending the Debye model (1912) for a crystal to a quasicrystal to cover the phonon as
well as the phason we have

g(ν) dν = Bν2 dν (14)

in which

B = 4πV

(
1

c3
1

+
1

c3
2

+
1

s3
1

+
1

s3
2

)
(15)

V represents the volume of the material andc1, c2, s1 ands2 are defined by (12) respectively.
As a special case, i.e. where the phason field is absent,Ki = Ri = 0, and the material

reduces to conventional isotropic matter,C11 = λ + 2µ,C11−C12 = 2µ,C44 = µ in whichλ
andµ are the Laḿe constants, thens1 = c2, s2 = 0, the relevant vibration component withs2
does not exist, in this case,c1 andc2 are the speeds of the longitudinal and transverse waves
of the conventional crystal, then equation (15) reduces to that corresponding to the classical
Debye model (1912), i.e.,

B = B ′ ≡ 4πV

(
1

c3
1

+
2

c3
2

)
. (16)
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This check shows that the result of the present work is in exact agreement with those of the
well known Debye model in the classical case.

Considering the total number of degrees of freedom should be finite, there is a maximum
frequencyνD, i.e., (13) will be rewritten as∫ νD

0
g(ν) dν = 3N. (17)

Substituting (14) into the above formula leads to

ν3
D = 9N/B. (18)

The lattice vibration of the quasicrystal is assumed to be quantized and an effective average
energyε(ν) corresponding to frequencyν introduced; then the total energy is

E = E0 +
∑

ε(ν) = E0 +
∫ νD

0
ε(ν)g(ν) dν (19)

whereE0 is a constant and

ε(ν) = hν

ehν/kT − 1
(20)

h and k are the Planck constant and Boltzmann constant,T the absolute temperature,
respectively.

According to the definition of specific heat

cV = (∂E/∂T )V
and formulae (19), (20) and (14) we obtain

cV

k
= B

∫ νD

0

(
h

kT

)2 ehν/kT ν4 dν

(ehν/kT − 1)2
(21)

in whichB is given by (15). Formula (21) gives the analytic interpretation of the specific heat
of a one-dimensional hexagonal quasicrystal, which can also be written as

cV

3Nk
= 4D(x)− 3x

ex − 1
(22)

where

D(x) = 3

x3

∫ x

0

y3 dy

ey − 1
(23)

is the Debye function and

x = hνD

kT
= 2

T
2 = hνD

k
y = hν

kT
. (24)

Here2 is understood as the generalized Debye characteristic temperature for a quasicrystal,
which can be evaluated as follows

2 = h

k
νD = h

k

(
9N

B

)1/3

= h

k

(
9N

4πV

)1/3 1

χ1/3
(25)

with

χ = 1

c3
1

+
1

c3
2

+
1

s3
1

+
1

s3
2

= ρ3/2

{
1

(C11)3/2
+

1

[(C11− C12)/2]3/2
+

1

ε
3/2
1

+
1

ε
3/2
2

}
. (26)

The preceding result on the specific heat of a one-dimensional hexagonal quasicrystal is
an extension of the Debye theory of crystals. It is well known that the Debye theory of specific
heat of crystals is based on the elastic continuous model, which is a phenomenological theory;
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it does not involve any concrete crystal structure. The basic parameters in the Debye formula
connected with the crystal elasticity are only the speedsc1 andc2 of the elastic longitudinal
and transverse waves of the medium. The scope of this study lies in extending the Debye
phenomenological model to include certain contributions from the quasiperiodicity of the
material to the specific heat. The generalized Debye formula (21) (or (22)) contains speeds
c1, c2, s1 ands2, which reflect the behaviours of the elastic vibration and wave propagation of
a one-dimensional hexagonal quasicrystal; these are quite different from those of crystals.

We emphasize once again that in the sense of the continuous medium model frame this
letter has taken into account the contribution of the phason field and the coupling between the
phonon field and phason field to the specific heat i.e., the effect of the quasiperiodicity of the
material has been considered. Of course, it is a phenomenological and approximate theory,
because the Debye theory is also a phenomenological and approximate theory even for the
simple crystal structure.

The assumption of∂( )/∂x3 = 0 implied in formula (1) in this paper is only a mathematical
simplification; this does not eliminate the effect of quasiperiodicity. If we do not make this
assumption, the mathematical manipulation is quite complicated, which is not necessary in
understanding the specific heat of quasicrystals.

This letter to some extent is an application of the elastodynamics of a one-dimensional
hexagonal quasicrystal developed by the author and his coworkers (Fanet al1999) to a thermal
property of the solid. The results on thermodynamics of the material connected with the present
study will be reported in another paper (Fan 1999).

The author would like to thank the Doctorate Program Foundation of the State Educational
Commission of China for support and Professor X S Xin for helpful discussion.
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